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Abstract

The h–p version of the finite element method is applied to the vibration of membranes. This is
accomplished using a polynomially enriched triangular element. New simple expressions of hierarchical C0

shape functions for triangles are given in terms of the shifted Legendre orthogonal polynomials. The h–p

version of the finite element method marries both the concepts of the conventional h-version and the p-
version. The accuracy of the solution is sought by simultaneously refining the mesh and increasing the
polynomial order in each element. Results of frequency calculations are found for triangular and L-shaped
membranes using a number of meshes and polynomial orders. It is shown that the h–p version of the finite
element method is always convergent from above and produces a high accuracy with few degrees of
freedom.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

A membrane is a special case of a plate when tension is the dominating factor and the resistance
to bending is very small. There are only a few known exact solutions for the natural frequencies of
membranes. Among the exact solutions are those for rectangular, circular, and triangular
domains. The reason so few exact solutions exist is that closed-form solutions to vibration
problems for irregular domains are difficult to obtain. Thus, approximate methods have to be
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

x, y rectangular Cartesian coordinates
x1; x2; x3 non-dimensional area coordinates
t time
Ae element surface area
we element transverse displacement
p polynomial order
r surface density
S surface tension

Ke
m;n element stiffness matrix

Me
m;n element mass matrix

qe
n element generalized coordinates

Ne order of element stiffness and mass
matrices

Kg global stiffness matrix
Mg global mass matrix
qg global generalized coordinates
o natural frequency
O ¼ o

ffiffiffiffiffiffiffiffiffi
r=S

p
; frequency parameter
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found. In this context, the h–p version of the finite element method is extended to the vibration of
membranes.
In the h–p version of the finite element method, the error in the solution is controlled by both

the diameter h of the largest element and the polynomial order p [1,2]. The h–p version of the finite
element method has been exploited in a few areas including plate vibrations [3] and beam statics
[4] and has been shown to offer considerable savings in computational effort when compared with
the standard h-version of the finite element method. A previous author’s work [5] was concerned
with the application of a rectangular p-element to membrane vibrations. The present work is the
first implementation of the h–p version of the finite element method based on a triangular element
to the vibration of membranes.
The hierarchical C0 shape functions for triangles have been first derived by Peano [6]. Szabo

and Babuska [7] expressed these functions in terms of the Legendre orthogonal polynomials. In
this paper, alternative simpler expressions of the C0 hierarchical shape functions for triangles are
given in terms of the shifted Legendre orthogonal polynomials.
Numerical examples will show that the use of the h–p version of the finite element method in

membrane vibration problems is valuable. The high accuracy of the solution using a few elements
and polynomial orders demonstrates the effectiveness of the method to membrane vibrations.
2. Formulation

2.1. The shape functions

A triangular element is shown in Fig. 1. Also shown in the figure are the dimensionless area
coordinates x1ð¼ 1� x2 � x3Þ; x2; x3 and their nodal and edge values (a list of nomenclature is
given).
The C0 shape functions for triangles gnðx1; x2; x3Þðn ¼ 1; 2; 3; . . . ; ðp þ 1Þðp þ 2Þ=2Þ consist of
�
 Three nodal shape functions:

x1; x2; x3; (1)
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Fig. 1. The triangular element coordinates.
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�
 (p�1) shape functions on edge 1–2:

x1x2P
n

i ðx2Þ; (2)
�
 (p�1) shape functions on edge 2–3:

x2x3P
n

i ðx3Þ; (3)
�
 (p�1) shape functions on edge 1–3:

x1x3P
n

i ðx3Þ; (4)
where

i ¼ 0; 1; 2; . . . ; p � 2; (5)
�
 ðp � 1Þðp � 2Þ=2 shape functions in the interior of the element:

x1x2x3P
n

j ðx2ÞP
n

kðx3Þ; (6)

where

j ¼ 0; 1; 2; . . . ; p � 3; (7)

k ¼ p � j � 3: (8)
In the above, P�
r denotes the rth order shifted Legendre orthogonal polynomial [8].

The hierarchical C0 shape functions gnðx1; x2; x3Þ ðn ¼ 1; 2; 3; . . . ; 28Þ for pp6 are quoted
explicitly in Table 1. They are given in the order shown in the table to preserve ‘‘hierarchy’’. This
property means that the shape functions corresponding to an interpolation of order p constitute a
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Table 1

The hierarchical C0 shape functions for triangles ðpp6Þ

n gn

1 x1
2 x2
3 x3
4 x1x2
5 x2x3
6 x1x3
7 2x1x

2
2 � x1x2

8 2x2x
2
3 � x2x3

9 2x1x
2
3 � x1x3

10 x1x2x3
11 6x1x

3
2 � 6x1x

2
2 þ x1x2

12 6x2x
3
3 � 6x2x

2
3 þ x2x3

13 6x1x
3
3 � 6x1x

2
3 þ x1x3

14 2x1x
2
2x3 � x1x2x3

15 2x1x2x
2
3 � x1x2x3

16 20x1x
4
2 � 30x1x

3
2 þ 12x1x

2
2 � x1x2

17 20x2x
4
3 � 30x2x

3
3 þ 12x2x

2
3 � x2x3

18 20x1x
4
3 � 30x1x

3
3 þ 12x1x

2
3 � x1x3

19 4x1x
2
2x

2
3 � 2x1x

2
2x3 � 2x1x2x

2
3 þ x1x2x3

20 6x1x
3
2x3 � 6x1x

2
2x3 þ x1x2x3

21 6x1x2x
3
3 � 6x1x2x

2
3 þ x1x2x3

22 70x1x
5
2 � 140x1x

4
2 þ 90x1x

3
2 � 20x1x

2
2 þ x1x2

23 70x2x
5
3 � 140x2x

4
3 þ 90x2x

3
3 � 20x2x

2
3 þ x2x3

24 70x1x
5
3 � 140x1x

4
3 þ 90x1x

3
3 � 20x1x

2
3 þ x1x3

25 20x1x
4
2x3 � 30x1x

3
2x3 þ 12x1x

2
2x3 � x1x2x3

26 20x1x2x
4
3 � 30x1x2x

3
3 þ 12x1x2x

2
3 � x1x2x3

27 12x1x
2
2x

3
3 � 12x1x

2
2x

2
3 þ 2x1x

2
2x3 � 6x1x2x

3
3 þ 6x1x2x

2
3 � x1x2x3

28 12x1x
3
2x

2
3 � 12x1x

2
2x

2
3 þ 2x1x2x

2
3 � 6x1x

3
2x3 þ 6x1x

2
2x3 � x1x2x3

A. Houmat / Journal of Sound and Vibration 282 (2005) 401–410404
subset of the set of shape functions corresponding to an interpolation of order p þ 1 and therefore
the stiffness and mass matrices of the element of order p are sub-matrices of the stiffness and mass
matrices of the element of order p þ 1:

2.2. The p-element stiffness and mass matrices

The potential energy Ue and kinetic energy Te of the membrane triangular p-element may be
expressed as

Ue ¼
S

4Ae

Z
Ae

X3
l¼1

al
qwe

qxl

 !2

þ
X3
l¼1

bl
qwe

qxl

 !2
2
4

3
5dA; (9)
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Te ¼ rAe

Z
Ae

ð _weÞ
2 dA; (10)

where the dot denotes differentiation with respect to time and the parameters al and bl are defined
in terms of the nodal x and y coordinates as

a1 ¼ x3 � x2; a2 ¼ x1 � x3; a3 ¼ x2 � x1; (11)

b1 ¼ y2 � y3; b2 ¼ y3 � y1; b3 ¼ y1 � y2: (12)

The transverse displacement we in this element may be expressed as

we ¼
XNe

n¼1

gnðx1; x2; x3Þq
e
nðtÞ: (13)

Substituting Eq. (13) into Eqs. (9) and (10) gives

Ue ¼ 1
2

qe
mKe

m;nqe
n; (14)

Te ¼ 1
2
_qe

mMe
m;n _q

e
n; (15)

where

m ¼ 1; 2; 3; . . . ;Ne: (16)

The element stiffness and mass matrices can be expressed as

Ke
m;n ¼

S

2Ae

X3
a¼1

X3
b¼1

ðaaab þ babbÞI
a;b
m;n; (17)

Me
m;n ¼ 2rAeJm;n: (18)

The order of the element stiffness and mass matrices is

Ne ¼ 1
2
ðp þ 1Þ ðp þ 2Þ: (19)

The integrals are defined as

Ia;bm;n ¼

Z
Ae

dgm

dxa

dgn

dxb
dA; (20)

Jm;n ¼

Z
Ae

gmgn dA: (21)

Each of the above integrals can be put into the following form:Z 1

0

Z 1�x3

0

f ðx2; x3Þdx2 dx3: (22)

The above integral can be calculated exactly by using symbolic computing which is available
through a number of commercial packages.
The integrals required to evaluate the element stiffness and mass matrices up to a maximal

value of p equal to 12 were calculated exactly using symbolic computing and stored in a file.
During execution, the program opens this file and reads the values of the integrals.
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If edge and internal generalized coordinates are regarded as associated with edge and internal
fictitious nodes whose number is p-dependent and are assigned numbers in the same way as nodal
generalized coordinates, then the assembly process will be identical to its counterpart in the h-
version and so the techniques used in the h-version become applicable.
Boundary conditions may be applied during the assembly process simply by ignoring the

restrained generalized coordinates.
Assuming harmonic motion, the governing equations of free motion can be obtained by

substituting the resultant global stiffness and mass matrices into Lagrange’s equations. This yields
the following equations:

½Kg � o2Mg	qg ¼ 0: (23)

The solution to the above generalized eigenvalue problem yields the natural frequencies.
3. Results

Two examples were considered to illustrate the convergence and accuracy of the h–p version of
the finite element method. The first example is a right isosceles triangular membrane (Fig. 2). One
of the reasons for choosing this particular membrane is that natural frequencies can be found in
closed form [9] and hence it will provide a basis of comparison for the current method. Results for
the 10 lowest frequency parameters O are shown in Table 2 along with the exact solution. The
results were generated from meshes of 1, 3, and 6 elements (Fig. 3) with p ¼ 4; 6, 8, 10, and 12 in
each element. In Table 2, NEL and NDOF denote the number of elements in each mesh and the
number of degrees of freedom, respectively. It is clearly shown in Table 2 that in each of the three
1

1

Fig 2. The right isosceles triangular membrane.
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Table 2

The 10 lowest frequency parameters O of the right isosceles triangular membrane

NEL p NDOF Mode no.

1 2 3 4 5 6 7 8 9 10

1 6 10 7.0325 10.0166 11.5580 14.8772 15.9193 16.8263 19.4435 21.1345 23.0694 24.9900

8 21 7.0249 9.9369 11.3508 13.1091 14.2952 15.9298 16.3966 18.0269 19.7404 21.0900

10 36 7.0248 9.9346 11.3281 12.9597 14.0674 15.7531 16.0475 17.1589 18.6887 19.8173

12 55 7.0248 9.9346 11.3272 12.9532 14.0502 15.7123 16.0201 16.9438 18.3760 19.1741

3 4 19 7.0647 10.2957 11.7468 15.0259 15.3207 18.0283 21.4031 23.0740 23.7094 24.4075

6 46 7.0260 9.9564 11.3727 13.2959 14.2991 15.8947 17.1940 17.9087 19.8653 21.0655

8 85 7.0248 9.9351 11.3310 12.9826 14.0914 15.7400 16.1660 17.1811 18.6071 20.0647

10 136 7.0248 9.9346 11.3273 12.9542 14.0525 15.7147 16.0282 16.9709 18.3823 19.2526

12 199 7.0248 9.9346 11.3272 12.9531 14.0497 15.7086 16.0193 16.9229 18.3274 19.1216

6 4 37 7.0260 9.9928 11.4078 13.2849 14.4433 15.9545 16.5110 18.2242 19.5313 21.2321

6 91 7.0248 9.9351 11.3294 12.9671 14.0731 15.7224 16.0465 16.9999 18.5004 19.2953

8 169 7.0248 9.9346 11.3272 12.9533 14.0501 15.7082 16.0197 16.9199 18.3312 19.1200

10 271 7.0248 9.9346 11.3272 12.9531 14.0496 15.7080 16.0190 16.9180 18.3187 19.1098

12 397 7.0248 9.9346 11.3272 12.9531 14.0496 15.7080 16.0190 16.9180 18.3185 19.1096

Exact 7.0248 9.9346 11.3272 12.9531 14.0496 15.7080 16.0190 16.9180 18.3185 19.1096

Fig. 3. Meshes for solutions given in Table 2.
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models a rapid convergence from above occurs as the polynomial order p is increased from 4 to 12
and highly accurate values are obtained for p ¼ 12: The most accurate values are found for the 6-
element mesh and p ¼ 12 in each element. In fact, these values agree up to 4 significant digits with
the exact ones for all of the 10 lowest modes. The reason that this model offers the most accurate
values is that it uses the largest number of degrees of freedom (NDOF ¼ 397).
The second example is an L-shaped membrane (Fig. 4). One of the reasons for choosing this

particular membrane is that it is one of the most troublesome to solve because of the re-entrant
corner which causes difficulty in estimating several of the lower modes. There is no known closed-
form solution to this problem but highly accurate solutions are available in the literature [10].
Results for the 10 lowest frequency parameters O are shown in Table 3 along with the solution of
Fox et al. [10]. The results were generated from meshes of 4, 6, and 12 elements (Fig. 5) with p ¼ 4;
6, 8, 10, and 12 in each element. Table 3 clearly shows that in each of the three models
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1 1

1

1

Fig. 4. The L-shaped membrane.

Table 3

The 10 lowest frequency parameters O of the L-shaped membrane

NEL p NDOF Mode no.

1 2 3 4 5 6 7 8 9 10

4 4 21 3.1272 3.9058 4.4560 5.7714 6.0131 6.8298 7.2595 7.6299 8.3327 9.0610

6 55 3.1122 3.8988 4.4429 5.4447 5.6765 6.4646 6.7258 7.0658 7.0858 7.6057

8 105 3.1084 3.8984 4.4429 5.4335 5.6541 6.4435 6.7051 7.0259 7.0261 7.5353

10 171 3.1068 3.8984 4.4429 5.4334 5.6519 6.4419 6.7044 7.0248 7.0248 7.5323

12 253 3.1061 3.8984 4.4429 5.4334 5.6508 6.4412 6.7044 7.0248 7.0248 7.5317

6 4 33 3.1170 3.9039 4.4497 5.5249 5.7151 6.6032 7.1284 7.3893 7.4779 8.0216

6 85 3.1094 3.8985 4.4429 5.4343 5.6564 6.4470 6.7119 7.0383 7.0444 7.5510

8 161 3.1071 3.8984 4.4429 5.4334 5.6521 6.4421 6.7046 7.0250 7.0250 7.5328

10 261 3.1061 3.8984 4.4429 5.4334 5.6509 6.4412 6.7044 7.0248 7.0248 7.5317

12 385 3.1056 3.8984 4.4429 5.4334 5.6502 6.4408 6.7044 7.0248 7.0248 7.5313

12 4 81 3.1123 3.8988 4.4439 5.4382 5.6607 6.4665 6.7457 7.0332 7.0332 7.5579

6 193 3.1077 3.8984 4.4429 5.4334 5.6531 6.4431 6.7047 7.0248 7.0248 7.5334

8 353 3.1062 3.8984 4.4429 5.4334 5.6510 6.4413 6.7044 7.0248 7.0248 7.5318

10 561 3.1056 3.8984 4.4429 5.4334 5.6502 6.4408 6.7044 7.0248 7.0248 7.5313

12 817 3.1053 3.8984 4.4429 5.4334 5.6498 6.4405 6.7044 7.0248 7.0248 7.5310

Fox et al. [10] 3.1048 3.8983 4.4428 5.4333 5.6492 6.4400 6.7043 7.0248 7.0248 7.5305
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Fig. 5. Meshes for solutions given in Table 3.

Table 4

Comparison of the 10 lowest frequency parameters O of the right isosceles triangular membrane

Element type NDOF Mode no.

1 2 3 4 5 6 7 8 9 10

Triangular p-element 15 7.025 9.984 11.390 13.141 14.698 16.255 19.441 20.483 21.226 21.803

Linear triangular element 15 7.324 10.897 12.522 14.958 16.813 18.504 19.401 21.390 23.350 23.557

Triangular p-element 36 7.025 9.935 11.328 12.960 14.067 15.753 16.048 17.159 18.689 19.817

Linear triangular element 36 7.173 10.412 11.938 13.958 15.493 17.205 17.862 19.374 21.368 22.080

Triangular p-element 55 7.025 9.935 11.327 12.953 14.050 15.712 16.020 16.944 18.376 19.174

Linear triangular element 55 7.128 10.267 11.758 13.651 15.069 16.783 17.307 18.641 20.529 21.229

Exact 7.025 9.935 11.327 12.953 14.050 15.708 16.019 16.918 18.319 19.110
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convergence is rapid from above as the polynomial order p increases from 4 to 12 and an excellent
agreement with the values of Fox et al. is obtained for p ¼ 12: The most accurate values are found
for the 12-element mesh and p ¼ 12 in each element. This model offers the most accurate values
because it uses the largest number of degrees of freedom (NDOF ¼ 817).
The performance of the triangular p-element with that of the linear triangular element on a

degree of freedom basis is also investigated. The linear triangular element represents the special
case of the triangular p-element when p ¼ 1: Results for the 10 lowest modes of the right isosceles
triangular membrane are shown in Table 4 along with the exact solution. The results of the p-
element were generated from a one-element mesh with p ¼ 7; 10, and 12 and NDOF ¼ 15; 36, and
55, respectively. The results of the linear triangular element were generated from meshes of 49,
100, and 144 elements and NDOF ¼ 15; 36, and 55, respectively. Table 4 clearly shows that the p-
element produces a higher accuracy that the linear triangular element with fewer degrees of
freedom.
It is well known that orthogonal polynomials have the drawback that numerical rounding

errors associated with floating point arithmetic increase with increasing polynomial order. In the
h–p version of the finite element method, the desired accuracy can be achieved by using a certain
number of degrees of freedom. This can be accomplished using two different procedures. The first
procedure consists of fixing the mesh and increasing the polynomial order. This is known as the p-
version of the finite element method. The second procedure consists of fixing the polynomial order
below its critical value and refining the mesh. The latter procedure has the advantage over the
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former in that it is capable of avoiding numerical rounding errors associated with floating point
arithmetic.
4. Conclusion

The h–p version of the finite element method has been developed to analyze the vibration of
membranes. This was accomplished using a polynomially enriched triangular element. New
simple expressions of hierarchical C0 shape functions for triangles were given in terms of the
shifted Legendre orthogonal polynomials. In the h–p version of the finite element method, the
accuracy of the solution is sought by simultaneously refining the mesh and increasing the
polynomial order in each element. Results of frequency calculations for triangular and L-shaped
membranes using a number of meshes and polynomial orders have illustrated the rapid
convergence and high accuracy of the present method. In comparison to the linear triangular
element, the triangular p-element was found to produce a higher accuracy with fewer degrees of
freedom.
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